Buscador de Cursos
Busca entre más de 14.000 Cursos Online Gratis de las mejores universidades del mundo
¿Qué quieres aprender hoy?
Escoge el idioma
Estos son loc cursos disponibles:
Buscar
Idioma
Categorías
Statistics For Data Science
- Project Overview
- Here you will describe what the project is about…give an overview of what the learner will achieve by completing this project.
Explaining machine learning models
- Explaining machine learning models
- you will learn how to understand the predictions of your model, visualize and interpret feature & model relation with statistics and much more.
Introduction to data analysis
Data and Big Data Analysis: Approaches, Functions and Software Tools The 1-st module explores the concept of data analysis and introduces basic techniques of this analysis. It discusses the concept of big data and its…
Meta Marketing Science Certification Exam
Prepare for and Take the Meta Marketing Science Certification Exam You will register for, prepare for, and take the Meta Marketing Science Certification Exam. Career Support and Congratulations! To finish out the program, here are…
Data and Statistics Foundation for Investment Professionals
Aimed at investment professionals or those with investment industry knowledge, this course offers an introduction to the basic data and statistical techniques that underpin data analysis and lays an essential foundation in the techniques that…
Statistics for Machine Learning for Investment Professionals
One of the biggest changes in the past decade is the rapid adoption of machine learning, AI, and big data in investment decision making. This course introduces learners with knowledge of the investment industry to…
Estadística y probabilidad: principios de Inferencia
- Modelos de probabilidad y sus aplicaciones
- Estimadores e introducción a la inferencia estadística
- Inferencia estadística
Python and Statistics for Financial Analysis
Visualizing and Munging Stock Data Why do investment banks and consumer banks use Python to build quantitative models to predict returns and evaluate risks? What makes Python one of the most popular tools for financial…
Análisis estadístico con Excel
Lección 1: Análisis exploratorio de datos Conceptos básicos estadísticos Medidas de tendencia central Medidas de posición Medidas de dispersión Medidas de forma Lecci on 2: Aplicación de probabilidades Conceptos básicos de probabilidades Distribución binomial Distribución…
Basic Statistics
Before we get started… In this module we’ll consider the basics of statistics. But before we start, we’ll give you a broad sense of what the course is about and how it’s organized. Are you…
Aprendiendo Python con estadística descriptiva
Project Overview En este curso basado en un proyecto aprenderás a calcular y visualizar medidas de tendencia central y de dispersión mientras exploras la programación de computadoras con objetos, instrucciones, sentencias y bibliotecas de Python….
ANOVA and Experimental Design
Introduction to ANOVA and Experimental Design In this module, we will introduce the basic conceptual framework for experimental design and define the models that will allow us to answer meaningful questions about the differences between…
Variable Selection, Model Validation, Nonlinear Regression
Module 1: Logistic Regression In this module, you will learn the differences between logistic regression and ordinary linear regression, how to obtain the regression parameters using the maximum likelihood method, and use R to compute…
Statistical Learning
Module 1: Statistical Learning – Terminology and Ideas Welcome to Statistical Learning! In this course, we will cover the topics: Statistical Learning: Terminology and Ideas, Linear Regression Methods, Linear Classification Methods, Basis Expansion Methods, Kernel…
A Crash Course in Causality: Inferring Causal Effects from Observational Data
Welcome and Introduction to Causal Effects This module focuses on defining causal effects using potential outcomes. A key distinction is made between setting/manipulating values and conditioning on variables. Key causal identifying assumptions are also introduced….