Principles of Modeling, Simulations, and Control for Electric Energy Systems

Por: edX . en: ,

As global energy demand grows, to mitigate climate change we must drive a swift transition to clean energy resources and enhanced electric power grid infrastructure.

In this course, you will explore systemic principles of future electric power system management, such as the role of smart grids, data-enabled machine learning, power electronics-control, and data-driven decision-making. You will learn how energy technologies, including intermittent renewable energy technologies, can be modeled and controlled at both the component and system level to achieve sustainable, well-functioning, and economically sound results.

You will also learn about assumptions underlying today’s hierarchical control and the innovations needed to support end-to-end flexible efficient electricity services by conventional and new resources. A particular emphasis is on data-enabled distributed cooperative systems solutions.

Throughout, you will examine examples of real-world industry problems and solutions, such as methods for achieving stable integration of diverse power resources, demand response, and fast storage at reasonable cost. Modeling can be used for developing the next generation software needed to operate these systems, and for implementing incentives for new technologies in electric energy markets.

This course is designed for people engaging the energy transition across disciplines and professions. It introduces fundamental concepts for those interested in working in power systems planning, operations, and management. Researchers with a background in dynamical systems and control will learn how to model the dynamics and objectives of enabling clean and resilient electricity services as systems problems while making physically meaningful assumptions and using these models as the basis for introducing their own novel data-enabled methods. Experienced professionals, including utility and energy industry executives, will gain insights into cutting-edge research, concepts, and software. Policymakers in government and leaders in non-governmental organizations (NGOs) will find strategies for building resilience in grid infrastructure, driving more equitable access to energy, and driving higher renewable energy penetration in local markets.