- Exploratory Data Analysis and Visualizations
- At the end of this module students will be able to: 1. Carry out exploratory data analysis to gain insights and prepare data for predictive modeling 2. Summarize and visualize datasets using appropriate tools 3. Identify modeling techniques for prediction of continuous and discrete outcomes. 4. Explore datasets using Excel 5. Explain and perform several common data preprocessing steps 6. Choose appropriate graphs to explore and display datasets
- Predicting a Continuous Variable
- This module introduces regression techniques to predict the value of continuous variables. Some fundamental concepts of predictive modeling are covered, including cross-validation, model selection, and overfitting. You will also learn how to build predictive models using the software tool XLMiner.
- Predicting a Binary Outcome
- This module introduces logistic regression models to predict the value of binary variables. Unlike continuous variables, a binary variable can only take two different values and predicting its value is commonly called classification. Several important concepts regarding classification are discussed, including cross validation and confusion matrix, cost sensitive classification, and ROC curves. You will also learn how to build classification models using the software tool XLMiner.
- Trees and Other Predictive Models
- This module introduces more advanced predictive models, including trees and neural networks. Both trees and neural networks can be used to predict continuous or binary variables. You will also learn how to build trees and neural networks using the software tool XLMiner.