Optical Engineering

Por: Swayam . en: ,

Week 1 : Introduction to Optical Engineering Postulates of Geometric Optics Geometric Optics and Imaging, Refraction at a single surfaceWeek 2 : Thin lens, Lens imaging conditions, Aperture stop, pupils, important rays
Lab: Introduction to Optics Software for Layout and Optimization (OSLO). Case study: Snells Law
Week 3 : Ray tracing using matrix method, Thick lenses, principal planes
Lab: OSLO - Designing a lens with specific focal length.
Week 4 : Monochromatic Aberrations, means of quantifying aberrations
Lab: OSLO - Locating the cardinal points of an optical system
Week 5 : Chromatic Aberrations, correcting aberrations
Lab: OSLO - Aberration Optimisation, Part 1
Week 6 : Gaussian beams, transmittance of an optical element
Lab: OSLO- Aberration Optimisation, Part 2
Week 7 : Gaussian beam transformation through a lens
Lab OSLO -Exploring different kinds of coordinate systems in OSLO
Week 8 : Basics of InterferenceWeek 9 : Applications of Interference, holography
Lab: (Matlab or Python) - Introduction
Week 10 : Basics of diffraction
Lab: (Matlab or Python) – Studying interference through simulations
Week 11 : Applications - Barcode readers,Finger print sensors,Pick-up heads used in DVD/CD players,Biomedicalinstrumentation Interferometers for metrology (Optical coherence tomography)SensorsWeek 12 : Applications - Barcode readers,Finger print sensors,Pick-up heads used in DVD/CD players,Biomedicalinstrumentation Interferometers for metrology (Optical coherence tomography)Sensors

Plataforma