Matrix Analysis with Applications

Por: Swayam . en: ,

Week 1 :Echelon form and Rank of a matrix, Solution of system of linear equations.
Week 2 : Vector spaces and their properties, subspaces, basis and dimension, linear transformations.
Week 3 : Eigen values and eigen vectors, Calyey Haminton theorem, diagonalization.
Week 4 : Special matrices, Gerschgorin theorem, inner product spaces, matrix norms and Gram Schmidt Process
Week 5 : Normal and Positive Definite matrices, Quadratic forms with applications
Week 6 : Evaluation of matrix functions, SVD and its applications
Week 7 : Stationary and non-stationary iterative methods for linear system
Week 8 : Krylov subspace methods, analysis of positive and non-negative matrices, polar decomposition theorem