Linear Regression in R for Public Health

Por: Coursera . en: , ,

    • Before jumping ahead to run a regression model, you need to understand a related concept: correlation. This week you’ll learn what it means and how to generate Pearson’s and Spearman’s correlation coefficients in R to assess the strength of the association between a risk factor or predictor and the patient outcome. Then you’ll be introduced to linear regression and the concept of model assumptions, a key idea underpinning so much of statistical analysis.
  • Linear Regression in R
    • You’ll be introduced to the COPD data set that you’ll use throughout the course and will run basic descriptive analyses. You’ll also practise running correlations in R. Next, you’ll see how to run a linear regression model, firstly with one and then with several predictors, and examine whether model assumptions hold.
  • Multiple Regression and Interaction
    • Now you’ll see how to extend the linear regression model to include binary and categorical variables as predictors and learn how to check the correlation between predictors. Then you’ll see how predictors can interact with each other and how to incorporate the necessary interaction terms into the model and interpret them. Different kinds of interactions exist and can be challenging to interpret, so we will take it slowly with worked examples and opportunities to practise.
    • The last part of the course looks at how to build a regression model when you have a choice of what predictors to include in it. It describes commonly used automated procedures for model building and shows you why they are so problematic. Lastly, you’ll have the chance to fit some models using a more defensible and robust approach.