Intro to TensorFlow em Português Brasileiro

Por: Coursera . en: , ,

  • Introdução ao curso
    • Este curso é uma introdução ao TensorFlow 2.x, que incorpora a facilidade de uso do Keras para a criação de modelos de machine learning. Abordaremos o design e a criação de um pipeline de dados de entrada do TensorFlow 2.x, a criação de modelos de machine learning com essa ferramenta e com o Keras, a melhoria da acurácia desses modelos e a geração dos modelos para uso em escala.
  • Introdução ao TensorFlow
    • Apresentaremos o novo paradigma do TensorFlow 2.x. Você aprenderá sobre a hierarquia da API TensorFlow e conhecerá os principais componentes do TensorFlow, os tensores e as variáveis com exercícios práticos.
  • Projetar e criar um pipeline de dados de entrada do TensorFlow
    • Mostraremos como trabalhar com conjuntos de dados e colunas de atributos. Você terá uma experiência prática com o carregamento de dados CSV, matrizes numpy com tf.data.Dataset, dados de texto e imagens usando o tf.Data.Dataset e com a criação de colunas de atributos numéricas, categóricas, em bucket e com hash.
  • Como treinar redes neurais com o TensorFlow 2 e com a API Keras Sequential
    • Neste módulo, você aprenderá a escrever modelos do TensorFlow com a API Keras Sequential. Mas, antes disso, falaremos sobre funções de ativação, perda e otimização. Em seguida, você conhecerá a API Keras Sequential para aprender a criar modelos de aprendizado profundo com ela. Você também verá como implantar o modelo para previsão na nuvem.
  • Como treinar redes neurais com o TensorFlow 2 e a API Keras Functional
    • A API de modelo Sequential é ideal para o desenvolvimento de modelos de machine learning na maioria dos casos, mas também tem limitações. Por exemplo, ela não é simples de definir modelos com várias fontes de entrada, produzir muitos destinos de saída ou modelos que reutilizam camadas. A API Keras Functional é uma forma de criar modelos mais flexíveis do que a API tf.keras.Sequential e é capaz de processar modelos com topologia não linear, com camadas compartilhadas e com várias entradas ou saídas. Além disso, ela oferece uma maneira mais flexível de definir os modelos. Especificamente, ela permite a definição de vários modelos de entrada e saída e que compartilham camadas. Mais do que isso, com ela é possível definir grafos de rede acíclicos ad hoc. Geralmente, a ideia principal é que um modelo de aprendizado profundo seja um grafo acíclico direcionado (DAG) de camadas. Portanto, a API Functional é uma forma de criar grafos de camadas. Também mostraremos como a regularização pode ajudar no desempenho do modelo.
  • Resumo
    • Resumiremos os principais tópicos sobre o TensorFlow abordados no curso até agora. Revisitaremos o principal código do TensorFlow, a API tf.data, as APIs Keras Sequential e Functional e o escalonamento dos modelos de machine learning com o AI Platform do Cloud.

Plataforma