# Inferential Statistical Analysis with Python

Por: Coursera . en: ,

• WEEK 1 - OVERVIEW & INFERENCE PROCEDURES
• In this first week, we’ll review the course syllabus and discover the various concepts and objectives to be mastered in weeks to come. You’ll be introduced to inference methods and some of the research questions we’ll discuss in the course, as well as an overall framework for making decisions using data, considerations for how you make those decisions, and evaluating errors that you may have made.
On the Python side, we’ll review some high level concepts from the first course in this series, Python’s statistics landscape, and walk through intermediate level Python concepts. All of the course information on grading, prerequisites, and expectations are on the course syllabus and you can find more information on our Course Resources page.
• WEEK 2 - CONFIDENCE INTERVALS
• In this second week, we will learn about estimating population parameters via confidence intervals. You will be introduced to five different types of population parameters, assumptions needed to calculate a confidence interval for each of these five parameters, and how to calculate confidence intervals. Quizzes will appear throughout the week to test your understanding. In addition, you’ll learn how to create confidence intervals in Python.
• WEEK 3 - HYPOTHESIS TESTING
• In week three, we’ll learn how to test various hypotheses - using the five different analysis methods covered in the previous week. We’ll discuss the importance of various factors and assumptions with hypothesis testing and learn to interpret our results. We will also review how to distinguish which procedure is appropriate for the research question at hand. Quizzes and a peer assessment will appear throughout the week to test your understanding.
• WEEK 4 - LEARNER APPLICATION
• In the final week of this course, we will walk through several examples and case studies that illustrate applications of the inferential procedures discussed in prior weeks. Learners will see examples of well-formulated research questions related to the study designs and data sets that we have discussed thus far, and via both confidence interval estimation and formal hypothesis testing, we will formulate inferential responses to those questions.