Genomics: Decoding the Universal Language of Life

Por: Coursera . en: , ,

  • Course Orientation
    • You will become familiar with the course, your classmates, and our learning environment. The orientation will also help you obtain the technical skills required for the course.
  • What Is a Genome and Why Do We Care?
    • Genes, genomes, DNA: these words have slipped into our daily news cycles and our awareness, but what they actually mean often remains unclear. In these lessons, we aim to give you, not just the Biology 101 explanation of what a genome is, but a real-life perspective on why you already care about genomics – perhaps in ways you didn’t even realize. Are you interested in where your food comes from, what health conditions you are most likely to develop, what fish will share your aquarium most successfully? Genomes are a key to finding a better answer to these and other everyday questions.
  • What Were the First Genomes Like and How Do They Work Now?
    • You may have seen DNA visually represented in different ways: a twisted ladder, a tangle of string, an array of sloppy X shapes, a row of letters. But what is DNA actually doing, and how does it relate to genes and the genome? How are scientists able to move from studying the physical structure of the genome to understanding its functionality? This module will help you become more comfortable with these ideas.
  • How Can We Use Genomes to Understand the Healthy Body and Fight Diseases?
    • Often, we hear about genes only when something goes wrong – when mutations, mistakes made in the DNA sequence, cause a disease like cancer cystic fibrosis. But what happens inside our cells that leads from a mutation in DNA to the physical symptoms of a disease? Why do some mutations cause positive outcomes, or no change at all? To answer these questions, we take a closer look at how information flows from genes, to RNA, to proteins, to all the physical structures and processes that make up living things.
  • What Can Genomes Tell Us About How to Grow New Organs or New Crops?
    • If all the cells in all the tissues and organs of our bodies have the same genome, how is it that they can look so different? How does a hair cell, a white blood cell, or a brain cell know what to do or where to go? The answer can be found by looking beyond the structure of the genome, into the timing of its activities. Recognizing how the information stored in the genome can be used in flexible ways shows us how living things can develop and change over time.
  • How Might Genomes Allow Us to Predict Health Problems Before They Occur?
    • You may have heard of "nature vs. nurture" or the modern day response, "nature AND nurture!" But how does "nurture," the environment, act through the genome? Can the biological effects of experience be passed from one generation to the next? And what does all of this have to do with everyday issues, like our physical and mental health? A closer look at two mechanisms that help regulate the activity for genes, epigenetic modifications and transcription factors, provides some answers.
  • How Do the Genomes of Ecosystem Members Cooperate or Conflict?
    • The world is a big and sometimes incomprehensibly complex place. Just as no gene in the genome acts in isolation, no living thing on this planet exists in isolation. In this final module of the course, we explore some of the rich, complicated interactions between living things, their genomes, and the world that surrounds them.