Control engineering

Por: Swayam . en: ,

Overview

This course shall introduce the fundamentals of modeling and control of linear time invariant systems; primarily from the classical viewpoint of Laplace transforms and a brief emphasis on the state space formulation as well. The course will be useful for students from major streams of engineering to build foundations of time/frequency analysis of systems as well as the feedback control of such systems. The 11th module of the course will cover a detailed application of filter design in the field of navigation and human movement (gait). Students will be able to design their very own basic navigational system using inertial sensors and microcontrollers.
INTENDED AUDIENCE : Undergraduate students taking course on Control EngineeringPRE-REQUISITES :Network and Circuits,
Basic Engineering Mathematics.
we suggest the NPTEL course on
Networks and Systems by Dr.V.G.K.Murti.
Content in Lectures 1 -6 and 20-29 will be relevant for this course.INDUSTRY SUPPORT :Any industry into Industrial Automation

Syllabus

COURSE LAYOUT

Week 1: Mathematical Modelling of SystemsWeek 2: Laplace Transforms, transfer functions, block diagram representation.Week 3: Block diagram reduction, Time response characteristics.Week 4: Introduction to stability, Routh Hurwitz stability criterion.Week 5: Root locus plots, stability margins.Week 6: Frequency response analysis: Nyquist stability criterion, Bode plots and stability margins in frequency domain.Week 7: Basics of control design, the proportional, derivative and integral actions.Week 8: Design using Root LocusWeek 9: Design using Bode plotsWeek 10: Effects of zeros, minimum and non-minimum phase systems.Week 11:State space analysisWeek 12: Design using State space

Thanks to the support from MathWorks, enrolled students have access to MATLAB for the duration of the course.

Plataforma