Computer Vision and Image Processing – Fundamentals and Applications

Por: Swayam . en: , ,

Overview

The intent of this course is to familiarize the students to explain the fundamental concepts/issues of Computer Vision and Image Processing, and major approaches that address them. This course provides an introduction to computer vision including image acquisition and image formation models, radiometric models of image formation, image formation in the camera, image processing concepts, concept of feature extraction and selection for pattern classification/recognition, and advanced concepts like motion estimation and tracking, image classification, scene understanding, object classification and tracking, image fusion, and image registration, etc.

This course will cover the fundamentals of Computer Vision. It is suited for mainly students who are interested in doing research in the area of Computer Vision. After completing the course, the students may expect to have the knowledge needed to read and understand more advanced topics and current research literature, and the ability to start working in industry or in academic research in the field of Computer Vision and Image Processing. They can also apply all these concepts for solving the real-world problems.
INTENDED AUDIENCE :
UG, PG and Ph.D students. PREREQUISITES : Basic co-ordinate geometry, matrix algebra, linear algebra and random process. INDUSTRIES SUPPORT :The software industries that develop computer visions apps would be benefitted from this course.

Plataforma