Building Batch Data Pipelines on GCP

Por: Coursera . en: , ,


Data pipelines typically fall under one of the Extra-Load, Extract-Load-Transform or Extract-Transform-Load paradigms. This course describes which paradigm should be used and when for batch data. Furthermore, this course covers several technologies on Google Cloud Platform for data transformation including BigQuery, executing Spark on Cloud Dataproc, pipeline graphs in Cloud Data Fusion and serverless data processing with Cloud Dataflow. Learners will get hands-on experience building data pipeline components on Google Cloud Platform using QwikLabs.


-In this module, we introduce the course and agenda

Introduction to Batch Data Pipelines
-This module reviews different methods of data loading: EL, ELT and ETL and when to use what

Executing Spark on Cloud Dataproc
-This module shows how to run Hadoop on Cloud Dataproc, how to leverage GCS, and how to optimize your Dataproc jobs.

Manage Data Pipelines with Cloud Data Fusion and Cloud Composer
-This module shows how to manage data pipelines with Cloud Data Fusion and Cloud Composer.

Serverless Data Processing with Cloud Dataflow
-This module covers using Cloud Dataflow to build your data processing pipelines

-This module reviews the topics covered in this course