AI Workflow: AI in Production

Por: Coursera . en: , ,

  • Feedback loops and Monitoring
    • This module focuses on feedback loops and monitoring. Feedback loops represent all the possible ways you can return to an earlier stage in the AI enterprise workflow. We initially discussed feedback loops in the first course of this specialization; however, here our focus is on unit testing. We are also looking at business value, a very important consideration that often gets overlooked; is the model having as significant effect on business metrics as intended? It is important to be able to use log files that have been standardized across the team to answer questions about business value as well as performance monitoring. You will have an opportunity to complete a case study on performance monitoring, where you will write unit tests for a logger and a logging API endpoint, test them, and write a suite of unit tests to validate if the logging is working correctly.
  • Hands on with Openscale and Kubernetes
    • This module will wrap up the formal learning in this course by completing hands on tutorials of Watson Openscale and Kubernetes. IBM Watson OpensScale is a suite of services that allows you to track the performance of production AI and its impact on business goals, with actionable metrics, in a single console. Kubernetes is a container orchestration platform for managing, scheduling and automating the deployment of Docker containers. The containers we have developed as part of this course are essentially microservices meant to be deployed as cloud native applications.
  • Capstone: Pulling it all together (Part 1)
    • In this module you start part one (Data Investigation) of a three-part capstone project designed to pull everything you have learned together. We have provided a brief review of what you should have learned thus far; however, you may want to review the first five courses prior to starting the project. A major goal of this capstone is to emulate a real-world scenario, so we won’t be providing notebooks to guide you as we have done with the previous case studies.
  • Capstone: Pulling it all together (Part 2)
    • In this module you will complete your capstone project and submit it for peer review. Part 2 of the Capstone project involves building models and selecting the best model to deploy. You will use time-series algorithms to predict future values based on previously observed values over time. In part 3 of the Capstone project, your focus will be creating a post-production analysis script that investigates the relationship between model performance and the business metrics aligned with the deployed model. After completing and submitting your capstone project, you will have access to the solution files for further review.