Agile Analytics

Por: Coursera . en: , ,

  • Introduction and Customer Analytics
    • Without an actionable view of who your customer is and what problems/jobs/habits they have, you’re operating on a shaky foundation. This week, we’ll look at how to pair your qualitative analytics on customer hypotheses with testable analytics.
  • Demand Analytics
    • Why build something no one wants? It seems like an obvious question, yet a lot (probably >50%) of software ends up lightly used or not used at all. This week, we’ll look at how to run fast but definitive experiments to test demand.
  • UX Analytics
    • Strong usability most often comes from ongoing diligence as opposed to big redesigns. Teams that do the hard work of consistently testing usability are rewarded with a consistent stream of customer wins and a culture of experimentation that makes work more enjoyable and rewarding.
  • Analytics and Data Science
    • The availability of big data and the ascendance of machine learning can supercharge the way you approach analytics. This week, we're going to learn how data science is changing analytics and how you can create a focused, productive interfaces to a data science capability.